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I. INTRODUCTION

In this paper we approach the subject of infrared detectors in a some-

what different manner than has been done in the past. Instead of a detailed

approach stressing, for example, the solid statephysics or the ways in which

it is possible to classify detecto we iseuss[he capabilities of present

day detectors from a more or less absolute viewpoint, i.e., in terms of

radiant power and timeA The intent -eia purposely 4usa to suppress many

of the fine points in order to attain a perspective of the subject ROM-

fully, we are trying to show the forest and not the trees. Those interes
N

in more detail are referred to the literature which includes the extensive

work of R. Clark Jones, a recent book by Smith, Jones, and Chasmar, a discus-

sion of photoconductors by R. Petritz, and articles by several other authors.(
Il5)

'*m thod of approach starts with a derivation of the performance

limits for ideal detectors, thus establishing a basis of comparison for real

detectors. The derivations include both the limits set by background fluc-

tuations and by signal fluctuations the-latter-subjeet-bei.g-trgtedkhere

in seme-detaitT next some recent data on detector performance are reduced

to a form allowing intercomparisons. Our method stresses the fundamental

fact that the minimum detectable power is directly related to the time taken

for the detection process or, more loosely, to the time constant of the

detector It then becomes possible to treat the subject in a very simple

way. On a graph whose ordinate is minimum detectable power and whose

The justification for dwelling upon signal fluctuations arises not
only from the fact that the subject is important conceptually, but it also
may have more practical relevance in the future. For example, very narrow
band (high-Q) infrared detectors may be signal fluctuation limited against
a target with a continuous spectrum. Also, in very low temperature back-
ground situations, e.g., the detection of space vehicles from a high alti-
tude platform, signal fluctuations might easily become important.
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abscissa is time constant, both the signal and background limits of ideal

detectors and the performance of all types of real detectors can be shown.

Since there are two methods of rating detectors, the results take the form

of two graphs, one for monochromatic radiation and the other for 500 K black

body radiation. The limitations to this approach are discussed: essentially

an exact intercomparison between detectors of different noise spectral den-

sities and different time constants is, to an appreciable extent, both in-

volved and arbitrary. Our method may understate the abilities of same de-

tectors (those with both a short time constant and also a 1/f noise spectrum)

but the error is rarely more than a factor of 3. Compensating this is the

fact that our method gives very quickly an approximate value for the minimum

detectable power of practically any detector at any infrared wave length.

An additional point is that in the future as detectors presumably tend closer

to ideal behavior, the error involved becomes even less.

For completeness, the background fluctuation limits are extended

through the long wave infrared region of the spectrum to the microwave

region. Not only does this serve to tie the subject together but it points

up the interesting fact that in the 'classical' region, quanta behave in a

very strange manner.

The material presented here should be of assistance to anyone who is

attempting to form an estimate of the reasonableness of claims for novel

schemes of infrared detection. Regardless of the principle of operation, it

should be possible to arrive at a performance rating for any infrared de-

tector that can be plotted on Figs. 6 and 7 thus allowing a direct comparison

with existing detectors.
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II. TE IDEAL DETECTOR

As radiation consists ultimately of quanta, it might be considered

reasonable to define an ideal detector simply as a device which can count

or indicate the arrival of each incident quantum. This is equivalent to

requiring that it have a detective quantum efficiency of unity for radiation

of all wave lengths. Furthermore, this ideal detector would be perfectly

noiseless, that is, it would generate no interfering signals nor would it

give a false count when, in fact, there were no incident quanta. Needless

to say, such an ideal detector is very far from physical realization at the

present time. There are, however, same detectors with a detective quantum

efficiency near unity for all wave lengths less than a certain value %

with a very rapid fall off in response beyond 0 . It is therefore a useful

concept to define an 'ideal quantum detector' as a device capable of noise-

lessly detecting all incident quanta with wave lengths less than the cutoff

wave length Xo, and having zero response beyond 10 .

A detector need not respond to the number of incident quanta but alter-

natively can respond to the energy or heating effect of the incident radiation;

absorption of radiation is indicated by a temperature rise of the detector.

Such devices are known as thermal detectors and usually respond uniformly

to radiation covering a very wide wave length region. The ultimate limits

of detectability of a thermal detector are set by temperature fluctuations

due to the statistical interchange of energy between the detector and its

surroundings. Incident signal radiation which produces a detector temperature

rise less than the r.m.s. value of this fluctuating temperature cannot be

said to be 'detected.' The numerical value of this fluctuation will be

given later; for the present an 'ideal' thermal detector will be defined as
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a device which completely absorbs all incident energy, is coupled to its

surroundings by only one totally blackened surface through radiation alone

(i.e., has no conductive or convective losses), and finally, is in thermal

equilibrium with its surroundings.
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III. BACKGROUND FLUCTUATIONS

In almost all real situations the target or the source of radiation to

be measured is not the only source which is supplying radiation to the de-

tector. In the daytime scattered sunlight is often incident upon the detector

but, even if this can be avoided, there is still the unavoidable radiation

from the background. This background radiation would be of small consequence

if it were perfectly steady; however, the rate of arrival of background

quanta at the detector is a statistically fluctuating quantity. The magni-

tude of this fluctuation sets a lower limit to the signal radiation that

can be detected. Quanta obey Bose-Einstein instead of classical statistics;

however, for a background temperature of 300 K and wave lengths less than

about 20 microns the difference between the two types of statistics is

negligible. Under these conditions, the rate of arrival of background

quanta N may then be considered as being completely random and the r.m.s.

fluctuation per sec, 7 n is simply equal to fW? For an ideal quantum

detector the signal photon current for a unity signal to noise ratio need

only be equal to the r.m.s. fluctuation per sec ifN

Before numerical values of the background fluctuation can be computed

it is necessary to know the effective temperature and spectral distribution

of the background and the solid angle through which background radiation is

incident upon the detector. It has been customary to consider the back-

ground as a 300 K black body supplying radiation over 2n steradians. This

To make this point perfectly clear, our usage of the term 'background
fluctuations' has nothing whatsoever to do with the fluctuations of the sky
background which would be obtained, for instance, by scanning across sunlit

clouds. The 'background fluctuations' we are referring to would exist if
the detector were placed in a perfectly lightless environment such as the
'dark tunnel' used to test infrared equipment.
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is reasonable since in the majority of detector applications background

radiation of roughly 300°K and near unity emissivity comes through the op-

tical system and from the local surroundings. Actually, an uncooled detector

receives background radiation from 4g steradians; only a cooled detector

without a cooled shield can be considered to be receiving background radiation

from 27c steradians.

Of course one can imagine situations in which the background can be

far lower than the 3000 K, 2A value, e.g., the local surroundings of the

detector can be cooled and the optical system pointed at a near zenith angle.

A further reduction can be obtained with a cooled filter transmitting an

atmospheric "window." In such cases it is usually quite straightforward

to modify the 300°K, 2v value of background appropriately.

When considering the improvement in system performance in a low back-
ground situation it is obviously necessary that the detector be able to sense
background fluctuations. Until recently, the internally generated noise of
almost all infrared detectors was so high that it masked the background
noise by a large factor. It should also be noted that with background limited
detectors, the system performance is independent of the f number of the
optics. That is to say, if background radiation comes only through the
optical system, it makes no difference whether the detector receives this
radiation from 2n steradians (an f/0.5 system) or from some smaller solid
angle.
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A. Background Fluctuation Limits for an Ideal Quantum Detector

It will be assumed that the ideal quantum detector accepts background

radiation through a 2v solid angle and does not reradiate. Further, the ideal

detector will be assumed to have the capability of counting quanta for any

desired time interval. In effect, the ideal detector has a completely ad-

justable 'time constant.'

The number of background quanta falling on a unit area per sec is then

given by the integral of the Planck equation of photon spectral density

N (T,X) up to the detector cut off wave length I'd

NB = N(T,X) d X

The detector will require the least radiation power if all the signal

quanta have wave lengths just short of the cut off wave length. For a unity

signal to noiseunit area, and a one second counting time, the minimum amount

of monochromatic radiation power to equal background fluctuations becomes:

hc r

min (  - c iBXc

For area A and counting time t:

PB rain Il(t )  ;N t

Expressions for Nx(T,k)d X are given in Ref. 2. The Radiation Slide

Rule of the Admiralty Research Laboratory is a very convenient means of
obtaining numerical values for both spectral and integrated forms of the
Planck equation.
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PB in(t) can thus be made as small as desired by decreasing A and increas-

ing t.

Table 1 gives the values of the background photon current and PB min (')

for a unit area detector and 300 K background 
radiation with 1c varying

between 1 and 10 microns. The interesting point here is the very rapid

change in minimum detectable power between 1 and 3 microns, while beyond 5

or 6 microns it is relatively constant.

Table 1

MINIMUM DETECTABLE POWER FOR IDEAL QUANTUM DETECTOR,
ONE SECOND COUNTING TIME, 1 CM2 AREA,

3000 K BACKGROUND, 2 SOLID ANGLE

Ce % PB (1), Watts
Cut Off Wave Length photons per sec min

(Microns) on 1 cm2 area Xc

1.0 6.6 (5 x 0 19 )*

2.0 4.2 x 1010 2.0 x 1014

3.0 5.8 x 1013 5.0 x 1013

4.0 1.9 x l01 2.2 x 10-12

5.0 1.3 x 1016 4.5 x lo-12

6.0 4.9 x l016 7.3 x 10-12

8.0 2.2 x 1017 1.2 x 1011

10.0 5.0 x 1 7  1.4 x i0- II

o 4.15 x 10 1 3.9 x 10 "11

(Ideal Thermal
Detector)

The expression for PB min breaks down for very small values of NB .
This number is included only to show the rapid variation of PB min between

I and 2 microns. It will become evident later that at 1 micron and 1 sec
counting time, the detector is actually signal fluctuation limited.
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The value of PB min for an ideal thermal detector cannot be obtained

from the above expressions for the ideal quantum detector. As x -) oo

the total mean square fluctuation and hence the required signal photon current

approaches a finite value. The energy per signal quantum approaches zero

as X -- co , thus PB min would also approach zero, an unreasonable result.

For wave lengths much greater than 1 mm, however, the assumption that signal

quanta can be directed onto the detector surface and be completely absorbed

becomes questionable. Without going into the exact derivation at this time,

it is interesting to note that a very simple approximate argument gives a

value for PB min for an ideal thermal detector within 22 per cent of the

generally accepted value: the mean square fluctuation per sec of the back-

ground photon current is NBl/2. (This neglects any effects due to the

departure of Bose statistics from classical statistics.) The energy repre-

sented by this fluctuation is: h N B1/2 where hy is the average energy

per quantum of a 300°K background. The value of this fluctuation energy per

sec is thus * .N u T 4 NBII2 .046 2.25 x 0-11 watts.
Ws 4.15 x 108

Reradiation by the detector doubles the mean square fluctuation, hence this

approximate vaue B m is 3.19 x 10"l watts for a 1 cm2 detector

subject to a 3000 K background.

SThe value given for example in Ref. 2 for PB min = 5.55 x 10- 1watts

refers to a unit bandwidth and hence, by the relation 2tAf - 1, to a
t - 1/2 sec. For a 1 see counting time PB min M 3.9 x lo' 1 1 watts.
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B. Background Fluctuation Limits for a 5000K Black Body Source

The relative abilities of detectors to sense black body signal radiation

is of considerable practical importance, hence, laboratory measurements gen-

erally include the response to a standardized black body source at 5000 K.

It is therefore necessary to compute the minimum amount of 5000 K radiant

power necessary to equal background fluctuations. For a given cut off wave

length the required signal current is the same as calculated above. The

average energy carried by the effective signal quanta is now:

Y )oc H×(500') d X

J/'c N (5000 ) d
0

where H (5000) is the spectral radiant flux density in watts/cm2 - cm A X

and N (5000) is the spectral radiant photon density. However, the detector

must be charged with all the radiant signal power, hence the average energy

per quantum must be multiplied by

H(500 
0

fc Hx(5o00
) d X

0

where H(5000) is the total radiant power from a 5000 K black body of unit

area. The resulting expression for minimum detectable power becomes

PBin 50 0 o (1) H(500) d f (T. dXfc Nx(5ooO) d> o×
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Figure 1 shows PB min 5000 for background temperatures ranging from 2000K

to 350 0 K. For a 30 0°K background there is a wide range of X for which

PB min 5000 remains almost constant. In other words, for an ideal quantum

detector looking at a 50 K black body against a 300°K background it makes

essentially no difference what cut off wave length is chosen (beyond 1 ):

the increased response to background by raising Xc is almost exactly compen-

sated by the increased signal. For black body radiation it can be shown in

general that PB min is insensitive to Xc for a target temperature approxi-

mately twice the background temperature.

For background temperature less than 3000 K (and a 500 K source) it is

advantageous to use as short a cutoff wave length as possible while the

opposite conclusion holds for background temperatures higher than 300°K.
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IV. SIGNAL FLUCTUATIONS

It is possible to imagine situations in which the background supplies

so few quanta to the detector that fluctuations or noise from this source

becomes unimportant. Under these circumstances, fluctuations in the arrival

of signal quanta will set a limit to the minimum detectable power. During

the time that the detector is pointed at the target, it is obviously necessary

that at least one quantum of the proper wave length arrive at the detector.

Indeed it will be necessary to require that more than one quantum be received

on the average to insure a low probability of missing a real target due to

these fluctuations. If the arrival of quanta can be considered as a random

process, the Poisson formula may be used to treat the fluctuations. Then,

if m events occur on the average in a given time interval t, the probability

P m(o) of no events occurring in t is e m . Thus if m = 1, the probability

that a real target could be missed is 36 per cent. To reduce this probability

below 1 per cent, m must be 4.6 or more. Using this rather arbitrary criterion

the minimum detectable paver of wavelength X and for a counting time t be-

cowes:

Ps n (t) 4.6 h c

~Smin (t)

For t : 1 sec and X : 3 microns, PS ri (i = 3 x 10"19 watts while, for
3 VL

comparison, PB min (i. set by 300 K background fluctuations is 5 x 10- 1 3 watts

for a 1 cm2 detector. Notice that PS min (t) for signal fluctuations varies
x

as t "1 and is independent of detect6r area while PB in (t) for background
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fluctuations varies as t-/2 and as Al/2. Figure 2 shows this dependence

graphically for several wave lengths assuming a 1 cm2 detector area. No

infrared detector regardless of its principle of operation can do better

than the signal fluctuation limits; no quantum detector of cutoff wavelength

Xc exposed to 300oK background radiation can do better than the appropriate

background fluctuation limits.

For monochromatic 1 micron radiation the crossover point between the

background and signal fluctuation limits occurs at a counting time t of 3 sec.

A 1 cm2 detector with a shorter time constant than 3 sec would be signei.

fluctuation limited; with a longer time constant it would be background

fluctuation limited.

The signal fluctuation limits for monochromatic radiation are perhaps

less interesting than those for a 5000K black body source. Using the above

criterion, on the average 4.6 quanta are required per counting time interval

to avoid missing a real target more than 1 per cent of the time. The average

energy per effective quantum is:

f 
c N X dX

0

using the same symbols that were defined earlier. As in the background

fluctuation case, however, all of the incident signal radiation must be

charged to the detector, hence the minimum power for a counting time t re-

quired to exceed the signal fluctuations from a 5000 K source becomes:
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SrSmin (t) 4.6 H (5000)t /I' N x (500') d

Table 2 gives PS min (1) for various cutoff wave lengths.

500°K

Table 2

Signal Fluctuation Limits for 500 K Black Body Radiation,
1 Sec Counting Time, Ideal Quantum Detector Cutoff Wave Length Xc

PS mino(I), (Watts))c 500O°K

1.0 5.2 x 10-10

1.5 1.0 x 10
1 3

2.0 1.4 x IO
"15

3.0 2.5 x 10 1 7

4.o 3.9 x 1018

10.0 2.2 x 10 19

OD 8.4 x l0 - 20

The large values of PS min at short wave lengths merely reflects the fact

5000 Y.
that a 50O°K source emits only a emal fraction of its total energy at short

wave lengths.
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Figure 3 is a plot of P S min(t) and PB min ( t) against counting

5000K 5000K

time t. The interesting point here is that the 3000K background limits are

very insensitive to wave length while the signal fluctuation limits are

quite sensitive to wave length, in considerable contrast to Fig. 2 showing

the monochromatic limits.
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V. REAL DETECTORS

Real detectors fall short of ideal performance in a number of respects,

the most obvious way being that real detectors generate considerable internal

noise. Except for a very few of the best detectors, the internally generated

noise masks the 3000K background fluctuations by a considerable factor. An

alternative way of saying the same thing is that if the incident ambient

radiation is lowered by cooling the surroundings, there are relatively few

detectors in existence for which there is a reduction in output noise.

One way of characterizing a detector's performance would be to find

the background temperature that gives rise to a noise equal to that generated

internally by the detector. Unfortunately, the noise spectral densities of

many real detectors differ markedly from the flat or "white" noise spectrum

of background fluctuations. The equivalent noise temperature would thus be

a function of the particular choice of bandwidth used in the measurement.

Detectors with a more or less flat noise spectrum might, however, be use-

fully described in terms of an equivalent background temperature.

This brings up a second major difference between the real and the

ideal detectors: except in very rare cases it is not possible to count the

arrival of individual infrared quanta as was assumed possible for the ideal

detector. Instead, the detector is usually connected to a linear amplifier

of bandwidth Af whose output voltage is therefore proportional to the

average value of the incident photon current. Measurements of the detector's

signal and noise output are often referred to one c.p.s. bandwidth. It is

possible to express the background noise of an ideal detector in terms of

electrical bandwidth merely by substituting for the counting time t the
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expression (2Af)- .* In the counting time terminology the expression was

obtained:

PB min(t) = hc [A

In the bandwidth terminology this expression becomes:

hc
PB min --k c

Since both modes of description are completely equivalent, it is only a

matter of taste or of convenience which is chosen for comparing the perform-

ance of real and ideal detectors.

Although in the past it has been conventional to use the bandwidth

description, there are advantages for our purposes in using the counting

time instead:

1. The results are given directly in terms of minimum detectable

power for a given time constant, a quantity that should be useful

in discussing detector applications.

2. The dependence of the minimum detectable power on counting time is

made explicit and kept continuously in view. In the bandwidth

description it is too easy to forget the fundamental fact that

"minimum detectable power" for a given detector can be varied over

a wide range of values merely by changing the effective counting

time, or the bandwidth.

This assertion is proven in Ref. 2.
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The problem now arises of how to reduce the existing experimental data

to a single number for each detector that accurately characterizes its ulti-

mate performance, both relative to detectors of the same type and to those

of different types. This problem would be fairly simple if real detectors

behaved more or less like an ideal detector, for example, if real detectors

all displayed a white noise spectrum but had detective quantum efficiencies

less than unity. Unfortunately, real detectors display a variety of noise

spectral densities and time constants. In the most extensive published data

all detectors were measured under one set of conditions (90 c.p.s. chopping

frequency and a 5 c.p.s. bandwidth). The result is that some detectors are

measured near their optimum chopping frequency while the majority are not.

R. Clark Jones has made a study of the problem of rating detectors,

the results being given in an article in Advances in Electronics.(1) Else-

where Jones introduced a rating which others have called "Jones' S," or SJ,

and defined as:

= NU 1l/2

This rating removes the dependence on chopping frequency; however, it

is only valid if the detector displays a 1/f noise spectral density. This

holds true to a fair approximation for the film photoconductors FbS, PbTe,

and PbSe, but even for these detectors at higher chopping frequencies, and

especially for the newer crystal detectors, InSb and doped Ge, the trend is

The expression for the background fluctuation limits for a detector
with uniform detective quantum efficiency E out to X (and zero beyond) is

identical with those derived earlier multiplied by 9-1/2. For signal fluc-
tuations the factor is t- .
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more towards a flat noise spectrum. For this reason Jones has recommended

that the S rating be dropped (at least for non-1/f detectors), but he has

no simple alternative rating scheme to offer in its place.4(
6 )

In the Advances in Electronics article, Jones separates all detectors

into two classes depending upon how detectivity is traded for speed of res-

ponse. ("Detectivity" is the reciprocal of the minimum detectable power

measured under certain conditions of chopping frequency and bandwidth.) Jones

can then assign a merit rating M1 or M2 to any given detector depending upon

its class. M1 is essentially a comparison of a real Class I detector to an

ideal thermal detector; M2 a comparison of a Class II detector with "Haven's

limit" (a semi-empirical expression representing the best attainable perform-

ance of real thermal detectors). In Ref. (6) Jones suggests that M2 be used

for all photoconductive and photovoltaic detectors not definitely proven to

be Class I.

Jones' system of rating detectors is not without its drawbacks. First,

and perhaps unavoidably, it is complex. The abo'e discussion does not begin

to show this complexity: for example, it turns out to be necessary to divide

each of the main classes into two sub-classes. A "reference time constant"

is introduced which equals detector time constant T for class Ia and IIb but

only one-fourth T for class Ib and IIa. Secondly, Jones' M ratings are only

able to compare detectors belonging to the same class. His '"etectivity in

reference condition A" compares only detectors in the some sub-class (since

Af is by definition different for each sub class ).44 This may again be

4Jones' D rating, although simple, does not do full Justice to each
detector regardless of its noise spectrum and imn constant. The limitations
of D* are treated in this paper, for we use (D ) as our measure of performance.

44it is assumed that the comparison is between detectors with the same
class and time constant, differing only in sub class.
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logically correct but it can hardly be said to be desirable. Thirdly, there

is a slight tendency for the M and D ratings to overstate the detector's

real abilities. Essentially, the maximum signal-to-noise ratio (or Dl(fm))

is assumed over the entire reference bandwidth instead of the average.

(This objection does not apply to the D rating.) Fourthly, Jones' rating

system is set up in a somewhat arbitrary manner. There is nothing inescapable

or compelling about his particular choices and, in a sense, the final results

do not convey much fundamental quantitative information to the reader. While

one knows that a high merit rating means a good detector, it is not easy to

answer the question, "How good?"

In view of the above considerations we adopt the following simple pro-

cedure for treating detector performance data: the "counting time" t for

the ideal detector will be replaced by the physical time constant r for the

real detector. The measured noise equivalent power of the real detector is

first normalized to unit area and unit bandwidth by dividing by - f- .A 4

Since 2Af • t = 1, this normalized power will correspond to Pmin(1/2),

the minimum detectable power for a 1/2 sec counting time. In order to plot

power against T correctly we must calculate the quantity Pmin(r), which is

simply ()mn(2 . Equivalently, we could translate the point

rl ~ i (2.1
' in on a straight line of slope 1 until it intersects the vertical

line through (Fig. 4). The distance from the point (,r, Pmin ()) to the

line representing Pmin for an ideal quantum detector is of course an indica-

tion of the quality of the particular detector.
44

4 The reciprocal of the normalized noise equivalent power is equal to

D*(1, 90 c.p.s.) or D*(5000K, 90 c.p.s.) depending on whether the NEP is a
spectral or 5000K black body measurement.

4 4According to Petritz the limits for an ideal photoconductor are poor-
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The point (T,Pmin (T)) gives immediately the minimum detectable power of

a 1 cm2 detector with pnysical time constant T when used in a circuit with

electrical bandwidth Af = 1 , which is of the order of the bandwidth needed

to reproduce a pulse of duration T. If this bandwidth is larger than is re-

quired for the particular detector application, the point may be moved upwards

to the right along a line of slope 1/2 until the desired bandwidth or overall

circuit time constant is obtained. In some cases, the point may even be moved

downward to the left to shorter time constants, e.g., if the detector's res-

ponsivity falls with increasing f at the same rate as the noise spectral

density, then equalizing circuits can be used to boost both signal and noise.

When the noise spectral density begins to "flatten out " to white noise,

this technique can no longer be used except at the expense of a degradation

in signal to noise.

To gain more insight into the approximations involved in this procedure,

it is convenient to use the bandwidth viewpoint. Figure 5 is a plot of signal-

to-noise ratio vs. chopping frequency for two detectors differing in noise

spectral density but having the same time constant. Curve A would hold for

a white noise spectrum, curve B for a 1/f noise spectrum. Customarily, the

data establishes the ordinates at 90 c.p.s. for each detector. Evidently

the 90 c.p.s. S/N value is somewhat unfair to detector B but is quite satis-

factory as an indication of detector A's performance. The maximum slope of

curve B is +1/2 below f - (2gr)"l and -1/2 above. Thus the 90 c.p.s. S/N

er by the factor f than the background limits given here. ( 3 ) Essentially
this is due to energy exchanges between the carriers and the lattice. Re-
flection at the surface of the detector (Fresnel losses) and less than com-
plete absorption of the incident radiation are additional factors that degrade
the performance of real detectors.
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understates the peak of detector B by the approximate factor (2 x90

for fm 90 c.p.s. Stated another way, for the 90 c.p.s. S/N to be an

order of magnitude low, fm - 18 kc corresponding to a physical time constant

of 9 microseconds. It is extremely unlikely that any detector exists with

a true l/f spectrum and a 9 ps time constant. More likely, a 9 ps detector

might display a 1/f spectrum below a few kc but would have a relatively flat

noise spectrum above, say, 5 kc. The conclusion is that the 90 c.p.s.

measurement is likely to be unfair by no more than a factor of about 3 for

the majority of PbS detectors and will be a somewhat better indication of

performance for other photoconductors.
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VI. RESULTS FOR PHOTOCONDUCJORS

Data on a large number of photoconductors, reduced to the (rPmin('r))

form, are plotted in Figs. 6 and 7. The points corresponding to individual

detectors are not plotted separately, but instead a line is drawn around

all the points belonging to a given detector type and temperature of operation.

There is a considerable amount of overlapping of these areas which is not

surprising. The best samples of cooled PbS and PbTe are seen to be about

an order of magnitude poorer than the 3000 K background limits for an ideal

quantum detector. The bulk of the samples are perhaps two orders of magni-

tude poorer while some are even three orders of magnitude from the appropriate

limits.

The shape of the areas is interesting. Using a little imagination, one

can say that the detectors of a given type cluster about a line whose slope is

slightly greater than unity (Fig. 7). It has been pointed out earlier that

the 90 c.p.s, measurement discriminates against the shorter time constant i/f

detectors. Had this factor been accounted for, the slope would have been

closely equal to unity, in other words, minimum detectable power is traded

directly with time constant. In essence, this is what Jones means by a

Class II detector.

The scale was purposely chosen to be small to de-emphasize the details.

There is nothing particularly fundamental about the precise extent of each

area--the sample size was uncontrolled, the detectors were manufactured over

a number of years from about 1950 to 1956 during which time many improvements

in all infrared photodetectors were made. Undoubtedly, the best modern de-

tectors of each type would fall closer to the background limits and one

would also expect present production detectors to show less variability and
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better average performance than the detectors plotted here. The importance

of Figs. 6 and 7 is that the domain of operation of present infrared detectors

is shown with respect to absolute limits.
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VII. EXTENSION TO VERY LONG WAVE LENGTHS

The preceding derivations for the performance limits of ideal detectors

were based on the assumption of a random arrival of quanta. As mentioned

earlier, photons obey Bose-Einstein statistics instead of classical statistics

and there are situations when the fluctuations are considerably greater than

in a random process. It can be shown that if n V quanta in the frequency

interval dv are incident upon a detector per sec the mean square fluctuation

in n. (per sec) is given by:

( 1V= fvj hv1)

hi'
Thus deviations from randomness begin to occur when the parameter x = k-T

becomes of the order unity and become very significant for x << 1. Figure

8 (taken from Ref. 4) is a plot of both An2 and nv vs. x for black body

radiation. Although n, approaches zero as x approaches zero, An2 remains

constant. This is a rather surprising result and is in marked contrast to

the behavior that is ordinarily expected of quanta. As Fellgett has pointed

out, this increased fluctuation in principle allows temperature to be ob-

tained by a measurement of An. Kittel has an apt description of the sit-

uation at small values of x when he says that "photons like to travel in

packs.(7

From the standpoint of the Nyquist theorem, the constancy of An2 is

not particularly remarkable since the noise power per unit bandwidth is also

independent of v and equals T.

* Actually, Nyquist recognized that deviations from a uniform noise
spectrum would exist at very high frequencies. See Ref. 8.
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The fluctuations in background radiation can be related to the electrical

fluctuations in a resistance by means of an antenna. At first look, it

might be supposed that a paradox exists since the constancy of An2 implies

that AE2, the mean square fluctuation in energy per second of the photon

2 2 22 2
flux, varies as v (i.e., E h v n ) rather than being independent of v.

The paradox is resolved when it is noted that the cross section of an antenna

varies as X2 or 1 which exactly compensates for the fall off in energy of
2

V
the photon background at low v's.

An interesting fact emerges from a study of radiation fluctuations: at

microwave frequencies the fluctuation in the background energy is of the

same order as the background energy itself (as seen by an antenna); in the

quantum domain the fluctuation in energy is far less than the background.

To prove this it is convenient to start with the black body photon spectral

density:

2x v2dvn = h a ep
V 2 hi'

c expj -l

For x very small:

2s kTn = - -vdv
V c2  h

The average background energy per sec falling on a collecting area A

becomes

L Av2 kTdv A kTdv

C2  k 2

It can be shown that the cross section of any antenna for background radiation



P-i697
5-11-59

35

(averaging over all angles of incidence and considering the fact that an

2
x2 (4)

antenna accepts only one polarization) is * This means that the elec-

trical power delivered to a resistor matched to the antenna Is given by the
_2

incident radiation power density multiplied by 2x . The average electrical

power collected by the antenna due to the background radiation is then

WN = kTdv, which is also the result of applying Nyquist's theorem.

For x very small the mean square fluctuation per sec of the background

radiation energy a -- = h2v2 n, 2 becmnes:

2
L-B -2 k kT dv (per unit area)

c per sec

The antenna transforms energy fluctuations in the radiation to energy fluc-

tuations in the antenna circuit. Thus

AW2 = k4 2dv (per sec)

To convert a fluctuation from a time to a bandwidth viewpoint, we multiply

A12 by 2dv hence:

A-2 = 2 k2T2 (dv) 2

2is the mean square deviation of the noise energy from the average value

WN. elgtt shows (Ref. 4) that A2 = 2 hence:

WN a kTdv

(UN is the instantaneous noise energy and equal.s 2 where V is a voltage

in the antenna circuit.) Thus at microwave frequencies (and at ordinary
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temperatures ) the fluctuations in the background energy are seen to be -2-

times the average background.

In the quantum domain we have random behavior, hence An = n V and

2 22 2 2
AE - h vAn = h v n = hvEV

where E is the average background energy. Since «< E it is possible

to use "space filtering," i.e., chopping techniques that allow relatively

weak targets of small angular extent to be detected against a large steady

background.

At very low temperatures even the microwave frequencies might be in
the "quantum domain." The important parameter is of course x - _ which
must be very much less than unity for the above to hold.
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VIII. THE IDEAL THERMAL DETECTOR

Using the above arguments for energy fluctuations, we can now indicate

the method used in Ref. 2 to derive the performance limits of an ideal thermal

detector. The energy fluctuation in dv is:

2As 2 h 2  2  2 2 1 2ir h2v4 ephi'd
h1 h n) h i' hexp exp d

Since fluctuations at each frequency are all independent the total mean square

energy fluctuation is the integral of the above expression over all v.

2 _ 2ck x4eXdx

c2 h3 (ex _ 1)2

Evaluating the integral, substituting for a its equivalent 2,ck and
15c %

3

then expressing the fluctuation on a bandwidth basis one obtains:

A = 8 kT aAf

for radiation falling on a detector of unit area and emissivity. As the

detector itself reradiates randomly the fluctuation is doubled and the final

expression becomes

A = 16AakT Af
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IX. REAL THERMAL DETECTORS

To complete our survey of detector performance we have plotted in Figs.

9 and3D the (r,Pmin(r)) limits for various types of thermal detectors. The

data used were taken from various sources (1,9-12) but no attempt was made

to plot only the best samples of each detector type. Good thermocouples

are less than an order of magnitude from the ideal thermal detector limit;

the best Golay cells are within a factor of 3 from this limit. Thermistors

with time constants less than 10 - 2 secs are about two orders of magnitude

poorer in performance than an ideal detector. The superconducting bolometer

is seen to combine a close approach to the ideal with a short (,v 1 millisec)

time constant.

When comparing detectors on their ability to detect monochromatic radi-

ation, Fig. 9 shows that photoconductors are considerably superior to thermal

detectors, especially at the shorter wave lengths. For detection of 5000K

black body radiation the situation is changed: a good thermal detector is

seen to compare rather favorably with a good photoconductor (Fig. 10).
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